The Weighted Kendall and High-order Kernels for Permutations

نویسندگان

  • Yunlong Jiao
  • Jean-Philippe Vert
چکیده

We propose new positive definite kernels for permutations. First we introduce a weighted version of the Kendall kernel, which allows to weight unequally the contributions of different item pairs in the permutations depending on their ranks. Like the Kendall kernel, we show that the weighted version is invariant to relabeling of items and can be computed efficiently in O(n ln(n)) operations, where n is the number of items in the permutation. Second, we propose a supervised approach to learn the weights by jointly optimizing them with the function estimated by a kernel machine. Third, while the Kendall kernel considers pairwise comparison between items, we extend it by considering higher-order comparisons among tuples of items and show that the supervised approach of learning the weights can be systematically generalized to higher-order permutation kernels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Kendall and Mallows Kernels for Permutations

We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples...

متن کامل

On kernel methods for covariates that are rankings

Kernel methods provide an attractive framework for aggregating and learning from ranking data, and so understanding the fundamental properties of kernels over permutations is a question of broad interest. We provide a detailed analysis of the Fourier spectra of the standard Kendall and Mallows kernels, and a new class of polynomial-type kernels. We prove that the Kendall kernel has exactly two ...

متن کامل

Finding the median of three permutations under the Kendall-tau distance

Given m permutations π, π . . . π of {1, 2, . . . , n} and a distance function d, the median problem is to find a permutation π that is the ”closest” of the m given permutations. More formally, we want to find π such that, for all π ∈ Sn, ∑m i=1 d(π , π) ≤ ∑m i=1 d(π, π ). (ICI, BIBLIO DE CE QUI A ETE FAIT) In this article, we choose to study the problem under the Kendall-Tau distance, denoted ...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

Spherically Symmetric Random Permutations

We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation-valued processes are identified for the Hamming, Kendall-tau and Caley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity. MSC:

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.08526  شماره 

صفحات  -

تاریخ انتشار 2018